Online Performance Modeling for NoSQL Databases using Extreme Learning Machines
نویسندگان
چکیده
NoSQL databases rise as a solution to manage large amounts of data in the cloud. Mechanisms to guarantee Quality of Service in can significantly benefit from performance predictability. Building an accurate predictive model to estimate a DBMS performance in a cloud environment is challenging since i) workload and resources allocation change dynamically; ii) concurrency and distribution introduce nonlinearity on performance metrics and iii) predictive models should be trained and updated online to capture unseen workloads. This paper presents an online performance modeling approach for NoSQL databases using extreme learning machines. Experimental results confirm that our performance modeling can accurately predict throughput under several scenarios.
منابع مشابه
A New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines
Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...
متن کاملStable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملPhysical Data Warehouse Design on NoSQL Databases - OLAP Query Processing over HBase
Nowadays, data warehousing and online analytical processing (OLAP) are core technologies in business intelligence and therefore have drawn much interest by researchers in the last decade. However, these technologies have been mainly developed for relational database systems in centralized environments. In other words, these technologies have not been designed to be applied in scalable systems s...
متن کامل